We study a random sampling technique to approximate integrals$\int_{[0,1]^s}f(\mathbf{x})\,\mathrm{d}\mathbf{x}$ by averaging the functionat some sampling points. We focus on cases where the integrand is smooth, whichis a problem which occurs in statistics. The convergence rate of theapproximation error depends on the smoothness of the function $f$ and thesampling technique. For instance, Monte Carlo (MC) sampling yields aconvergence of the root mean square error (RMSE) of order $N^{-1/2}$ (where $N$is the number of samples) for functions $f$ with finite variance. RandomizedQMC (RQMC), a combination of MC and quasi-Monte Carlo (QMC), achieves a RMSE oforder $N^{-3/2+\varepsilon}$ under the stronger assumption that the integrandhas bounded variation. A combination of RQMC with local antithetic samplingachieves a convergence of the RMSE of order $N^{-3/2-1/s+\varepsilon}$ (where$s\ge1$ is the dimension) for functions with mixed partial derivatives up toorder two. Additional smoothness of the integrand does not improve the rate ofconvergence of these algorithms in general. On the other hand, it is known thatwithout additional smoothness of the integrand it is not possible to improvethe convergence rate. This paper introduces a new RQMC algorithm, for which weprove that it achieves a convergence of the root mean square error (RMSE) oforder $N^{-\alpha-1/2+\varepsilon}$ provided the integrand satisfies the strongassumption that it has square integrable partial mixed derivatives up to order$\alpha>1$ in each variable. Known lower bounds on the RMSE show that this rateof convergence cannot be improved in general for integrands with thissmoothness. We provide numerical examples for which the RMSE convergesapproximately with order $N^{-5/2}$ and $N^{-7/2}$, in accordance with thetheoretical upper bound.
展开▼
机译:我们研究了一种随机采样技术,通过在某些采样点对函数求平均,来近似积分$ \ int _ {[[0,1] ^ s} f(\ mathbf {x})\,\ mathrm {d} \ mathbf {x} $。我们关注被积数是光滑的情况,这是统计中出现的问题。逼近误差的收敛速度取决于函数$ f $的平滑度和采样技术。例如,对于函数有限的函数$ f $,蒙特卡洛(MC)采样产生的均方根误差(RMSE)收敛于$ N ^ {-1/2} $阶(其中,$ N $是样本数)方差。 MC和准蒙特卡罗(QMC)的组合,RandomizedQMC(RQMC)在更强的假设(被积数有界变化)的情况下,获得了$ N ^ {-3/2 + \ varepsilon} $阶的RMSE。 RQMC与局部对偶采样的组合实现了具有阶次混合偏导函数的函数$ N ^ {-3 / 2-1 / s + \ varepsilon} $(其中$ s \ ge1 $是维)的RMSE收敛。二。通常,被积物的额外平滑度不会提高这些算法的收敛速度。另一方面,已知在没有附加的平滑度的情况下,不可能提高收敛速度。本文介绍了一种新的RQMC算法,我们证明了该算法可以实现阶次N $ {-\-alpha-1 / 2 + \ varepsilon} $的均方根误差(RMSE)的收敛,前提是被积物满足该假设。在每个变量中具有平方可积偏混合型导数,阶数高达\\ alpha> 1 $。 RMSE的已知下限表明,对于具有这种平滑度的被积体,通常无法提高该收敛速度。我们提供了数值示例,根据理论上限,RMSE分别以阶数$ N ^ {-5/2} $和$ N ^ {-7/2} $收敛。
展开▼